

PARALLELE 45

Société de Géomètres-Experts Associés

ANSE DU MIMBEAU

RAPPORT D'OPERATION

18 AVRIL 2024

Dossier	Révision
230117H	V 1.0

Sarl **PARALLELE 45 –** Société de Géomètres-Experts Associés

Siège social – 65, Avenue de la Côte d'Argent – BP 5 – 33680 LACANAU

T: 05.56.03.50.99 - lacanau@parallele-45.com - www.parallele-45.com

Bureaux secondaires

217, Rue Nationale BP 38 33240 SAINT ANDRE DE CUBZAC T : 05.57.43.02.08 <u>cubzac@parallele-45.com</u> 12 rue Régnault BP 84 33120 ARCACHON T : 05.56.83.09.36 arcachon@parallele-45.com

Informations marché

Objet Marche	Levé topographique Anse du mimbeau
Client	SIBA
Référence devis ou marché	Accord cadre 2023231400
Référence dossier Parallèle 45	230117H
Titre du document	Rapport d'opération
Référence document	BC n°3

<u>Historique du document</u>

Commentaire	Révision	Préparé par	Validé par	Date
Version 1	1	M. GUEGAN	M. MAS	18/04/2023

Document de référence

Titre du document	Référence
BON DE COMMANDE	2024-03

1. INTRODUCTION

1.1. DESCRIPTION DU PROJET

Relevés aériens par lidar aéroporté (drone) et sondeur multifaisceaux au niveau de l'anse du Mimbeau sur la commune de Lège Cap ferret

1.2. SITUATION DE LA ZONE D'ETUDE

La zone d'étude s'étend sur 113 ha

Figure 1 : localisation de la zone d'étude

1.3. RESUME DES OPERATIONS

Le tableau suivant présente le résumé des opérations réalisées dans le cadre de ce projet.

Date	Nature des Opérations
28/03/2024	Préparation du vol avec demandes des autorisations sur la plateforme Alpha
	Tango
08/04/2024	Relevés topographiques par Drone Lidar
08/04/2024	Relever bathymétrique sur le tombant et le chenal du Mimbeau
11/04/2024	Relevés topographiques par Drone Lidar
17/04/2023	Calculs, validation des données et traitement

Tableau 1 : Résumé des opérations par ordre chronologique

1.4. HORAIRES DES MAREES

• Horaire et hauteur d'eau du lundi 8 avril 2024 port de référence Le Cap Ferret

• Horaire et hauteur d'eau du jeudi 11 avril 2024 port de référence Le Cap Ferret

1. PROCEDURES DU LEVE

1.1. UNITES

Le tableau 2, présente les unités de mesure utilisées

Unités		
Coordonnées	Degrés Décimaux (DD)	
Mesure linéaire	Mètres (m)	
Angles	Degrés (°)	
Heure	UTC	

Tableau 3 : Unités de mesure

1.2. PROJECTION GEODESIQUE

Les paramètres géodésiques de l'opération sont référencés en RFG93. La projection utilisée est le Lambert 93. Les paramètres sphéroïdaux sont détaillés dans le Tableau 3 et les paramètres de grille pour la projection sont détaillés dans le Tableau 4.

Système géodésique	RGF93
Ellipsoïde	IAG-GRS80
Demi grand axe	6 378 137,0 m
Aplatissement	1/298,257222101

Tableau 4 : Système géodésique

Système de projection	Lambert 93
Type de projection	Conique conforme
Latitude de l'origine	46°30′N
Longitude de l'origine	3°E
Latitude de tangence	46°31′ 09′′95535
Facteur d'échelle	0.999051030064
Est d'origine (E0)	700 000 m
Nord d'origine (N0)	6 600 000 m

Tableau 5 : Système de projection

1.3. REFERENCES VERTICALES

Dans le cadre de la présente étude, la référence verticale utilisée est le NGF - IGN69. Le positionnement en altimétrie des appareils est déterminé grâce aux données GNSS pour le drone et GEO2

Le drone est positionné en temps réel en mode RTK via des stations de références implantées par nos soins par mesure GNSS en mode TERIA (+/- 0.04 m).

1.4. **DIMENSION TEMPS**

Les heures indiquées dans les différents rapports correspondent au Temps Universel (TU), Soit Heure Locale - 2 heure (heure d'été).

1.5. SCENARIO DES VOLS

L'ensemble des vols ont été réalisé en scenario S2.

Tableau 6 : Scénarios Drone

2. PERSONNEL ET EQUIPEMENTS

2.1. PERSONNEL

L'équipe Parallèle 45 est constituée du personnel suivant adapté aux spécificités du projet.

Personnel	Qualification	Poste	
Administration			
Jean-Yves MAS	Géométre Expert DPLG	Chef de Projet	
	Support Technique		
Fabrice DE FAVERI	Ingénieur Géométre-Expert	Support	
	Techniciens Terrain		
BORGES Alexo	Technicien Topographe	Pilote	
Opérations en mer			
Cédric GUEGAN	Hydrographe CAT B	Chef de mission - Opérateur	
		en mer	
Julien BERNOLLE	Hydrographe CAT A	Opérateur	
		en mer	
Traitement			
Cédric GUEGAN	Hydrographe CAT B	Traitement des	
		Données et mise en forme	

Tableau 7 : Liste du personnel impliqué dans le projet

2.2. DJI MATRICE 300 RTK

Drone porteur de capteurs lidar (L1) pour la réalisation de relevés topographiques.

Figure 3 : Drone

N° série	1ZNBHC400C00QC
Envergure sans hélice	89.5 cm
Poids total maximal	9 kg
LIDAR (L1)	3FCDJ5Q004PQDY
Positionnement	GNSS RTK
Châssis	Plastique
Système radio	Radio commande de 2.4 GHz
Batteries	2 Batterie 4920 mAh / 7.6 V
Nacelle	Nacelle 3 axes

Tableau 8 : Paramètres d'acquisition du sondeur multifaisceaux

2.3. VEDETTE HYDROGRAPHIQUE « GEO 2 »

La vedette hydrographique GEO 2 de 5.80 m de long et 2.46 m de large est mono motorisée. Grâce à sa perche latérale, l'installation de sondeur multifaisceaux est sous coque.

 Tableau 9 : fiche descriptive de GEO 2

2.4. EQUIPEMENTS MARITIMES

2.4.1 Liste des équipements

Pour les levés hydrographiques et topographiques, les équipements suivants (tableau 7) sont mobilisés afin d'assurer le positionnement et l'acquisition des données.

Positionnement		
Positionnement principal Centrale d'attitude inertielle sbg splitbox	Avec récepteur GNSS TRIMBLE et ses antennes et son capteur EKINOX2 Précision en temps réel : +/- 0.05 m Précision après traitement : +/- 0.025 m	
Base terrestre Réseau TERIA	Réception des données Teria via terminal NTRIP	

Centrale Inertielle		
Centrale inertielle immergée : EKINOX2	Roulis et Tangage : +/- 0.02° Cap : +/- 0.05°	
Bathymétrie multifaisceaux		
Sondeur Bathymétrique Mutifaisceaux : SeaBat T50- P Teledyne RESON	Résolution : 6 mm Fréquences : 200 kHz à 400 kHz Mode Equi distance (150°) ou Angulaire (165°) Nombre de faisceaux : 1024 Imagerie sonar	

Profils de célérité						
Sonde de célérité : Sonde CTD CASTAWAY	Portée : 1400 à 1730 m/s Précision : +/- 0.15 m/s Résolution : 0.01 m/s					
	Logiciels					
Bathymétrie	Logiciel acquisition : PDS	Everywhere you look [™]				
	Logiciel de traitement : PDS					
Rendus	Autocad - Covadis	A AUTOCAD				

Tableau 10 : Liste des équipements et logiciels utilisées au cours du

2.4.2 Aperçu de l'installation

Les prises de vue suivantes illustrent l'emplacement de chacun des capteurs permettant une acquisition de qualité des données bathymétriques.

Figure 5 : Antenne « Maitre-Escale »

Figure 6 : Base sondeur-centrale inertielle sur perche

Figure 7 : Perche en mode Acquisition

2.4.3 Offsets

Tous les équipements sont localisés dans un référentiel commun. Le point de référence commun (CRP) choisi correspond à l'emplacement de la centrale inertielle sur la perche. Les distances en XYZ entre le CRP et les différents repères des instruments ont été mesurées par une station Totale avant la mobilisation du navire. Le Tableau 8 synthétise les valeurs des offsets retenues pour les opérations du levé.

A noter les offsets de positionnement des antennes GNSS par rapport au CRP déterminé dans le système de la centrale inertielle SBG sont :

<u>Antenne maitre bâbord :</u>	<u>Antenne escale tribord :</u>
Y (axe bateau) : 0.989 m	Y (axe bateau) : 1.046 m
X : -0.570m	X -1.779 m
Z : 2.3518 m	Z : 2.342 m

Tableau 8 : Valeur offsets

3. METHODOLOGIE ET TRAITEMENT DES DONNEES

3.1. LEVER PAR DRONE

3.1.1 Paramètres d'acquisition

Les paramètres d'acquisition sont définis par rapport aux caractéristiques du site et au rendu souhaité en termes de densité de points pour le vol Lidar.

Paramètres de vols		
Altitude de vol	50 m	
Vitesse de vol	10 m/s	
Angle de prise de mesure	Nadir	

Tableau 11 : Paramètres de vols

3.1.2 Coordonnées des stations RTK

Base n°1 RTK Géographique			
Latitude 44.64341566 N			
Longitude	-1.24605003 W		
Hauteur Ellipsoïde	50.457 m		
Base n°1 RTK RGF93 L93			
X :	363446.414		
Υ:	6402863.699		
Ζ:	3.582 m		

Base n°2 RTK Géographique				
Latitude 44.64675521 N				
Longitude	-1.24523414 W			
Hauteur Ellipsoïde	50.668 m			
Base n°2 RTK RGF93 L93				
X :	363530.955			
Υ:	6403230.636			
Z: 3.799 m				

Base n°3 RTK Géographique				
Latitude 44.63672352 N				
Longitude	-1.24699040 W			
Hauteur Ellipsoïde	49.799 m			
Base n°3 RTK RGF93 L93				
X :	363331.988			
Υ:	6402125.432			
Z: 2.912 m				

Tableau 12 : Coordonnées des stations de référence RTK

3.1.3 Détermination des écarts sur zone de contrôles pour chaque vol

• Vol A moyenne des écarts : +0.03 m

• Vol B moyenne des écarts : +0.04 m

• Vol C moyenne des écarts : +0.00 m

• Vol D moyenne des écarts : +0.01 m

- Vol E moyenne des écarts : +0.06 m

3.2. LEVE SONDEUR MULTIFAISCEAUX

3.2.1 Principe

Les sondeurs bathymétriques multifaisceaux mesurent simultanément la profondeur dans plusieurs directions selon un axe perpendiculaire à la trajectoire du navire. Ils permettent ainsi l'exploration (insonification) d'une large bande, de l'ordre de 3 à 7 fois la hauteur d'eau, avec une grande résolution (d'autant plus grande que les faisceaux sont étroits). La mesure de la bathymétrie consiste à déterminer le temps de parcours aller-retour des signaux de chaque faisceau en fonction de leur angle d'incidence. Cette mesure dépend directement de l'instant de retour du signal acoustique correspondant à la détection bathymétrique du fond. Cette détection est opérée par analyse de la différence d'amplitude entre les signaux émis et reçus, et/ou par interférométrie en exploitant la différence de phase.

Figure 8 : Principe du sondeur multifaisceaux (Source : IFREMER)

3.2.2 Correction d'attitude

Les corrections d'attitude viennent compenser les mouvements du navire afin de rétablir le trajet de l'onde acoustique entre la surface et le fond en fonction de son angle d'incidence. Elles sont d'autant plus importantes pour les mesures multifaisceaux en raison du balayage latéral du sondeur.

Pour répondre à cette problématique, le sondeur est couplé à une centrale inertielle afin de compenser en temps réel les mouvements du bateau qui affectent le transducteur : roulis, tangage, etc.

Une calibration de la centrale inertielle a été réalisée à chaque début de journée de sondage. Le 8/04/2024

	Heure	Fichier de référence	DELTA OFFSET		
<u>CALIBRATION</u> <u>IMU</u>	15h05	SBG CONF BASE HAUTE	Dx	Dy	Dz
			0,01	0,01	0,06
			Temps de Cali	bration	2'

Tableau 14 : Valeurs calibration IMU

3.2.3 Correction de réfraction

La célérité (vitesse) du son dans l'eau dépend principalement de la salinité et de la température. Elle varie ainsi le long de la colonne d'eau, de la surface (généralement plus rapide) jusqu'au fond. Ces variations de célérité induisent une erreur sur l'estimation de la distance parcourue par l'onde sonore, en particulier sur les faisceaux latéraux, et donc sur les mesures bathymétriques. En l'absence de correction, on aboutit à une « circularisation du fond».

Figure 9 : Circularisation du fond – Profil de célérité (Source IFREMER)

Cet effet est corrigé en intégrant le profil de célérité du son, mesuré au moyen de la sonde de célérité (Mesure directe de vitesse de propagation du son).

Noms du profil de célérité effectué durant le sondage : 10J101603_20240408_130042.csv

3.2.4 Paramètres d'acquisition

Les paramètres d'acquisition sont définis par rapport aux caractéristiques du site, principalement en termes de profondeur, et aux spécifications de levé (Tableau 11).

Paramètres d'acquisition du sondeur multifaisceaux – T50P			
Fréquence 400 kHZ			
Impulsion	Entre 25 et 50 μs		
Ouverture angulaire	Entre 120 – 150°		

Tableau	15 :	Paramètres	d'acquisition	du sondeur	multifaisceaux

3.2.5 Patch Test

Afin de corriger des écarts angulaires d'installation entre le sondeur multifaisceaux et la centrale inertielle, il est nécessaire d'effectuer une calibration appelée patch test. Ces derniers ont été effectué sur zone durant la campagne de mesure.

Cette calibration est réalisée en respectant les consignes suivantes au niveau du suivi de profils et le sens d'acquisition. Il est recommandé d'effectuer un profil de célérité avant toute calibration.

Figure 10 : Profils types Patch test (Source TELEDYNE)

Ecarts angulaires déterminés pour le 17/04/2023			
Roll 0.18 ° PU+			
Pitch	-0.41 ° BU+		
yaw 0.54 °			

Tableau 16 : Détermination des biais angulaire pour la journée de 17/04/2023

4. RESULTATS SYNTHETISES

4.1. OBJECTIF

L'objectif de la mission était de réaliser un lever surfacique par lidar aéroporté et bathymétrique de la zone d'étude identique à celle de. Nous avons privilégié les données lidar aéroporté sur les zones non humides et de l'estran.

Figure 12 : Zone de levé effectué par Parallèle 45 en avril 2024

4.2. MESURES

Voici le tableau reprenant l'ensemble des données acquises par moyen maritime et terrestre.

Surface mesurée	1 271 505 m ² soit 127 hectares
Z moyen	-3.65 m
Taille cellule	0.50 m
Nombre de cellule	5 086 021
Nombre de points	125 088 680

Tableau 17 : Synthèse des données observées

4.3. COMPARAISONS ENTRE LE LEVER 2023 ET 2024

4.3.1 Analyse des mouvements de terrain dans la partie intérieur de la conche

Figure 13 : Différence entre les leves 2023 et 2024 sur la zone d'étude du Mimbeau

Les variations de volume entre avril 2023 et avril 2024 montre un bilan négatif de - 27 289 m3 sur une surface de 1 263 543 m². On note sur tout le linéaire de la dune une érosion de sa crête.

Figure 14 : Différence zone A entre les leves 2023 et 2024 sur l'intérieur de la conche

4.3.2 Analyse des mouvements de terrain sur l'ensemble de la zone A

Au niveau de la conche nord on observe comme en 2023 un apport de sable au niveau de la partie ouest de la plage du Mimbeau et une perte de sable au niveau du chenal.

- Déblais : 16 590 m3
- Remblais : + 5 319 m3

Figure 15 : Différence zone A entre les leves 2023 et 2024 sur l'intérieur de la conche

4.3.3 Analyse des mouvements de terrain sur l'ensemble de la zone B

Au niveau du tombant sur cette zone B on observe un déblai notable sur un linéaire de 255 m de long pour un volume de- 5 659 m3 et une légère zone de remblais pour un volume de +2 200 m3.

- Remblais : + 2 200 m3
- Déblais : 5 659 m3

Cette zone est à surveiller. Elle révèle une érosion du tombant sur cette zone localisée.

Figure 16 : Différence zone B entre les leves 2023 et 2024 sur l'intérieur de la conche

Forte Perte de sable	
Faible perte de sable	
Gain de sable	

4.3.4 Analyse des mouvements de terrain sur l'ensemble de la zone C

Au niveau du tombant sur cette zone C on observe un déblai sur un linéaire de 320 m. Comme dans la zone B, cela révèle une érosion du tombant sur cette zone localisée. C'est une zone à surveiller également.

Figure 17 : Différence zone B entre les leves 2023 et 2024 sur l'intérieur de la conche

5 LIVRABLES

Plusieurs livrables sont produits :

- 4 lots de points .asc correspondant à la globalité de la zone d'étude :
- 230117H_0.25m _partie_A.asc
- 230117H_0.25m _partie_B.asc
- 230117H_0.25m _partie_C.asc
- 230117H_0.25m _partie_D.asc

-Deux fichiers .dwg

- 230117H.dwg
- 230117H_Profils.pdf

- 1 fichier kmz :

- 230117H.kmz
- -34 fichiers .pdf reprenant l'ensemble des éléments produits

- Rapport d'opération

Les coordonnées des points sont données en Lambert 93, référence altimétrique NGF-IGN69

A Lacanau, le 19/04/2024

Jean-Yves Mas Géomètre-Expert DPLG

Sté sports Associés Côla Argant - B.P. 5 ALAST JORGER fél. 05 56 03 50 99 05 56 03 57 AT scription : 2003C2000

Cédric GUEGAN Hydrographe FIG-OHI CAT B